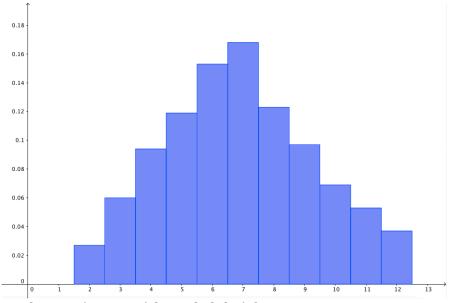
Nous allons, de manière virtuelle, (à l'aide du logiciel GEOGEBRA) réaliser l'expérience aléatoire du lancer de 2 dés (simultanément). A chaque lancer, nous calculerons la somme obtenue en additionnant les valeurs apparues sur les 2 dés. Nous réitèrerons cette expérience 1000fois.

Ci-dessous, voici le tableau résumant les résultats de l'expérience :

Valeur de la somme	Nombre d'apparition	Fréquence d'apparition
2	27	0,027
3	60	0,06
4	94	0,094
5	119	0,119
6	153	0,153
7	168	017
8	123	0,12
9	97	0,097
10	69	0,069
11	53	0,053
12	37	0,04
Total	1000	1

Pour plus de visuel, nous avons alors réaliser le diagramme en bâtons de la situation : la fréquence d'apparition des sommes en fonction de la valeur des sommes :



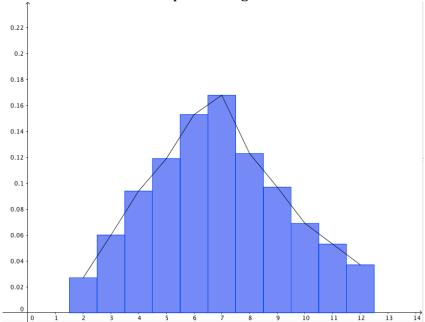
L'air du rectangle en X équivaut à la probabilité de X. (Rappel : aire d'une rectangle = Longueur*largeur)

Exemple: P(X = 9) = aire du rectangle en 9 = 1 * 0.097 = 0.097

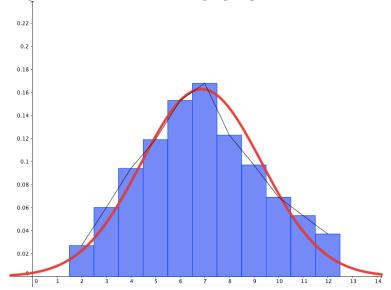
Ainsi, si on additionne l'air de chaque rectangle, nous arrivons a $1 = P(\Omega)$

On observe aussi que la forme obtenue est assez particulière : les barres deviennent de plus en plus grandes jusqu'au « milieu » et puis se mettent à devenir de plus en plus petites de façon « presque » uniforme.

Si on relie le sommet au centre de chaque rectangle :



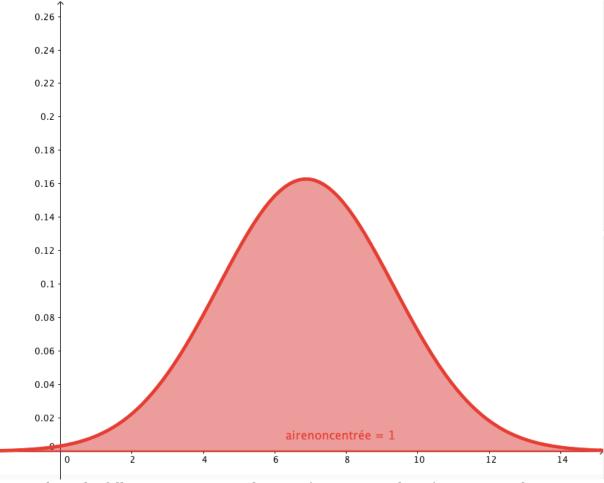
Si on augmente le nombre dois fois où l'expérience a été réalisée, jusqu'à considérer un nombre infini de fois, la « courbe » va s'harmoniser de sorte qu'elle forme une cloche parfaitement homogène comme le montre le graphique ci-dessous :



Cette courbe en forme de cloche est appelée « Courbe de Gauss ». Elle représente la probabilité de l'événement X.

Exemple : P(X = 8) = 0.15

La probabilité P(X) qui était représentée par l'air des rectangles est maintenant, à l'infini, représentée par l'air sous la courbe. L'air totale sous cette courbe représente la probabilité $P(\Omega)=1$

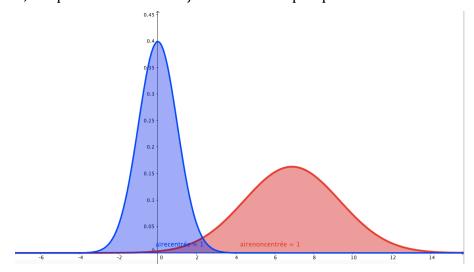


Cependant, il a fallu trouver une courbe, représentant ces données, qui soit identique quelque soit le contexte, de façon à pourvoir (par calcul) utiliser la même table de probabilité et faciliter les calculs.

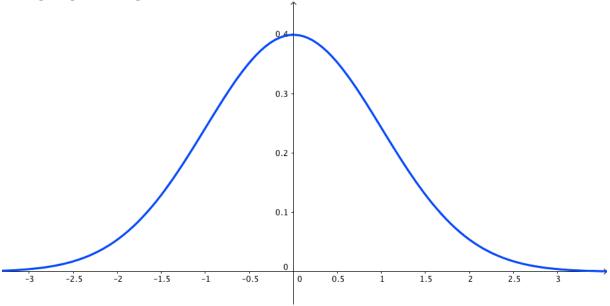
C'est pourquoi, la courbe étant symétrique par rapport à la moyenne μ et dépendant de l'écart-type σ , on a utilisé ces 2 paramètres de façon à faire un changement de variable.

$$Z = \frac{X - \mu}{\sigma}$$

La courbe ainsi obtenue (voir ci-dessous) garde alors les propriétés de celle de départ avec, en plus, l'importance d'être toujours la même quelque soit le contexte!!!!



C'est à partir de cette courbe dite *centrée réduite* que tous les calculs de probabilité seront établis. Nous allons donc nous attarder sur sa signification et calculerons certains exemples pour comprendre son fonctionnement.



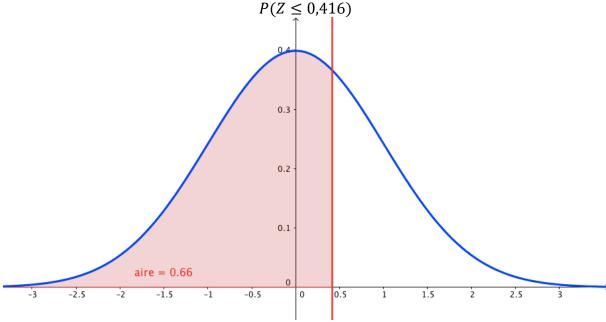
Exemple 1

Si nous voulons calculer la probabilité que la somme des 2 dés soit inférieur à 8, c'est-à-dire

$$P(X \leq 8)$$

Il nous faut effectuer un changement de variable $Z = \frac{X-\mu}{\sigma} = \frac{8-6,87}{2,45} = 0,416$

Nous devons donc calculer, sur la nouvelle courbe dû au changement de variable



On a donc $P(Z \le 0.416) = 0.66$.

Lors d'un lancé de 2 dés, on a donc 66% de chance d'avoir une somme inférieur à 8.

Exemple 2

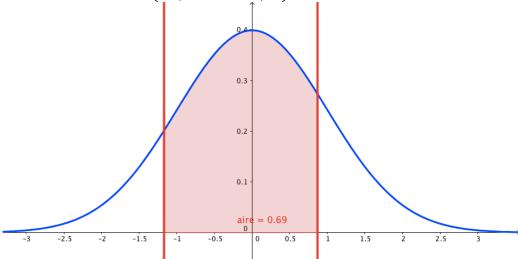
Calculons la probabilité d'obtenir une somme comprise entre 4 et 9 :

$$P(4 \le X \le 9)$$

Il nous faut avant tout effectuer 2 fois les changement de variable (pour 4 et pour 9) :

$$Z = \frac{4-6,87}{2,45} = -1,17$$
 et $Z = \frac{9-6,87}{2,45} = 0,87$

Il nous faut donc calculer : $P(-1,17 \le Z \le 0.87)$



On a donc $P(-1.17 \le Z \le 0.87) = 0.69$, ce qui signifie que, lors d'un lancé de 2 dés, on a 69% de chances d'obtenir une somme comprise entre 4 et 9.

Si on observe l'air de la courbe de départ (avant qu'elle ne soit modifiée-déplacée), on obtient exactement le même résultat. D'un point de vue graphique donc, l'observation est identique. Le changement de variable facilité donc uniquement les calculs !!!

